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Outline

• Goals for this work

• Solution Block Diagram

• Circuit Schematic Details

• Device Layout

• Measured Performance

• Summary
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Introduction

• Goal:

– Develop a 2G PA solution maintaining the 

RF performance of HBT while delivering 

next generation size and cost
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Reduce Size and Cost Through Die Elimination
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Power Control Block Diagram
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Importance of Squaring Response
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Voltage-to-Current Processing
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Transconductor Feedback Amplifier Square Function
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Square Function Response
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Core Bias and Error Amplifier
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PA Bias Interface
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Power Amplifier
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Complete HBT Die
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Power Amplifier with Integrated Control 

785 um x 1345



Module Power Control Accuracy
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Burst Time Mask Performance

RFIC –Seattle 2-4 June 2013

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

O
u

t 
P

o
w

e
r 

(d
B

m
)

Upper Mask 

Lower Mask 

3V, 25C

3.5V, 25C

4.8V, 25C

3V, -20C

3.5V, -20C

4.8V, -20C

3V, 85C

3.5V, 85C

4.8V, 85C

10
us

8
us

10
us

10
us

8
us

10
us

Transient satisfies time and spectral masks



Slide 21

Summary

• BiFET HBT technology enables integration of 

PA and control on a single die

• Circuit solutions were developed to meet all 

3GPP systems standards with margin

• Detailed Device simulations are confirmed 

through extensive testing and through 

sustained high volume production

RFIC –Seattle 2-4 June 2013

Thanks to Hongxiao Shao for PDK development, 

Pete Zampardi for process and modeling, 

Phil Lehtola for RF PA and module design, 

Robert Rammelsberg for design verification.
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Review from last lecture
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Review from last lecture



Metal Mask 

A-A’ Section

B-B’ Section

Review from last lecture



Should now know what you can do in this process !!

Can poly be connected to active under gate?

Can poly be connected to active any place?

Can metal be placed under poly to isolate it from bulk?

Can metal connect to active?

Can metal connect to substrate when on top of field oxide?

How can metal be connected to substrate?

Can metal 2 be connected directly to active?

Could a process be created that will result in an answer of YES to most of above?

Can metal 2 be connected  to metal 1?

Can metal 2 pass under metal 1?

Review from last lecture



How does the minimum-sized inverter delay when 

driving an identical device compare between a 0.5u 

process and a 0.18u process?

VIN VOUT

VDD

VSS

VIN VOUT



How does the minimum-sized inverter delay when 

driving an identical device compare between a 0.5u 

process and a 0.18u process?

VIN

VOUT

VOUT

C IN

VIN

Recall:

CIN=CGSn+CGSp

tHL=RPDCIN

tLH=RPUCIN

tPROP=tHL+tLH



How does the minimum-sized inverter delay when 

driving an identical device compare between a 0.5u 

process and a 0.18u process?

VIN

VOUT

It will also be shown later that if n inverters are connected in a loop and 

if n is odd, this will form a “ring” oscillator:
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How does the minimum-sized inverter delay compare between a 0.5u 

process and a 0.18u process?

VIN

VOUT

Assume n-channel and p-channel devices with L=Lmin, W=1.5Lmin

tHL=RpdCL
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Note  0.18u process is much faster than 0.5u process

Feature 0.5 0.18 Units

Vtn 0.81 0.5 V

Vtp -0.92 -0.53 V

uCoxn 109.6 344 uA/V^2

uCoxp 39.4 72.6 uA/V^2

Cox 2.51 8.5 fF/µm^2

Vdd 5 1.8 V

fosc-31 94.5 402.8 MHz

Feature 0.5 0.18 Units

CL 1.88 0.83 fF

Rpd 1452 1491 ohms

Rpu 2858 3941 ohms

THL 2.73 1.23 psec

TLH 5.38 3.26 psec

f 123 223 GHz

Some scale even faster



Basic Devices and Device Models

• Resistor

• Diode

• Capacitor

• MOSFET

• BJT

Lets pick up a discussion of 

Technology Files before moving to BJT

Return to basic devices !



Basic Devices and Device Models

• Resistor

• Diode

• Capacitor

• MOSFET

• BJT



Bipolar Junction Transistors

• Operation

• Modeling



Carriers in Doped Semiconductors

n-type

p-type



Carriers in Doped Semiconductors

V

I

V

I

Current carriers are dominantly electrons

Current carriers are dominantly holes

Small number of holes are short-term carriers

Small number of electrons are short-term carriers



Carriers in Doped Semiconductors

Majority 

Carriers

Minority 

Carriers

n-type electrons holes

p-type holes electrons



Carriers in MOS Transistors 
Consider n-channel MOSFET

Saturation Region

Triode  Region

Channel



Carriers in MOS Transistors 
Consider n-channel MOSFET

Saturation Region

Triode  Region

Carriers in electrically induced n-channel are electrons



Carriers in MOS Transistors 
Consider p-channel MOSFET

Saturation Region

Triode  Region

Channel



Carriers in MOS Transistors 
Consider p-channel MOSFET

Saturation Region

Triode  Region

Carriers in electrically induced p-channel are holes



Carriers in MOS Transistors 

Carriers in channel of MOS transistors are Majority carriers



Bipolar Transistors

npn stack pnp stack

E E

B B

C C

With proper doping and device sizing these form Bipolar Transistors

pnp transistor

B

C

E

npn transistor

B

C

E
•  Bipolar Devices Show Basic Symmetry 

•  Electrical Properties not  Symmetric

•  Designation of C and E critical



Bipolar Transistors

pnp transistor

B

C

E

npn transistor

B

C

E

n-channel MOSFET p-channel MOSFET

In contrast to a MOSFET which has 4 terminals, a BJT only has 3 terminals



Bipolar Operation

npn stack

E

B

C
Under forward BE bias current flow into base and out of emitter

Consider npn transistor – Forward Active Operation

Current flow is governed by the diode equation

Carriers in emitter are electrons (majority carriers)

When electrons pass into the base they become minority carriers

Quickly recombine with holes to create holes in base region

Dominant current flow in base is holes (majority carriers)



Bipolar Operation

npn stack

E

B

C
Under forward BE bias and reverse BC bias current flows into base region

Carriers in emitter are electrons (majority carriers)

When electrons pass into the base they become minority carriers

When minority carriers are present in the base they can be attracted to collector

Consider npn transistor – Forward Active Operation



Bipolar Operation

npn stack

E

B

C

If no force on electron is applied by collector, electron will contribute to base current

F1

Consider npn transistor – Forward Active Operation



Bipolar Operation

npn stack

E

B

C

If no force on electron is applied by collector, electron will contribute to base current

Electron will recombine with a hole so dominant current flow in base will be by 

majority carriers

F1

Consider npn transistor – Forward Active Operation



Bipolar Operation

npn stack

E

B

C

Consider npn transistor – Forward Active Operation

When minority carriers are present in the base they can be attracted to collector with 

reverse-bias of BC junction and can move across  BC junction

F1

F2



Bipolar Operation

npn stack

E

B

C

Consider npn transistor – Forward Active Operation

When minority carriers are present in the base they can be attracted to collector with 

reverse-bias of BC junction and can move across  BC junction

Will contribute to collector current flow as majority carriers

F1

F2



Bipolar Operation

npn stack

E

B

C
F1

F2So, what will happen?

Consider npn transistor – Forward Active Operation



Bipolar Operation

npn stack

E

B

C
F1

F2

So, what will happen?

Some will recombine with holes and contribute to  base current and some will 

be attracted across BC junction and contribute to collector

Size and thickness of base region and relative doping levels will play key role in 

percent of minority carriers injected into base contributing to collector current

Consider npn transistor – Forward Active Operation



Bipolar Operation

npn stack

E

B

C
Under forward BE bias and reverse BC bias current flows into base region

Consider npn transistor – Forward Active operation

Carriers in emitter are electrons (majority carriers)

When electrons pass into the base they become minority carriers

Minority carriers either recombine with holes and contribute to base current

or are attracted into collector region and contribute to collector current

When minority carriers are present in the base they can be attracted to collector



Bipolar Operation

npn stack

E

B

C

Consider npn transistor – Forward Active operation

Minority carriers either recombine with holes and contribute to base current

or are attracted into collector region and contribute to collector current

IB

IC

If most of the minority carriers are attracted to collector,   
c EI I

Thus IB<<IC

Implications of this observation?

If input to device is IB and output is IC, the BJT will behave as a current amplifier 

with large current  gain !!    This was the key observation by Bell Labs in 1948 !!



Bipolar Operation

Under forward BE bias and reverse BC bias current flows into base region

Consider npn transistor - Forward Active Operation

• Efficiency at which minority carriers injected into base region and contribute to 

collector current is termed α

• α  is always less than 1 but for a good transistor, it is very close to 1

• For good transistors  .99 < α < .999

• Making the base region very thin makes α large

npn stack

E

B

C

IB

IC



Bipolar Transistors

npn stack pnp stack

E E

B B

C C

• principle of operation of pnp and npn transistors are the same

• npn usually have modestly superior properties because mobility of 

electrons is larger than mobility of holes

• minority carriers in base of pnp are holes



Bipolar Operation

npn stack

E

B

C

In contrast to MOS devices where current flow in channel is by majority carriers, 

current flow in the critical base region of bipolar transistors is by minority carriers

Consider npn transistor – Forward Active Operation

tentatively:  VBE>0.4   VBC<0.4



Bipolar Operation

E

B

C

EBC III −=+

IC

IE

IB

EC II α−=
BC II





−
=
1






−
=
1

defn

BC II =β is typically very large

often 50<β<999 

Consider npn transistor – Forward Active Operation
tentatively:  VBE>0.4   VBC<0.4



Bipolar Operation 

IC

IE

IB

E

B

C
BC II =

β is typically very large

Bipolar transistor can be thought of as current amplifier with a large current gain

In contrast, MOS transistor is inherently a tramsconductance amplifier

Current flow in base is  governed by the diode equation t

BE

V

V

B eI SI
~

=

t

BE

V

V

C eI SI
~

=Collector current thus varies exponentially with VBE

Consider npn transistor – Forward Active Operation

tentatively:  VBE>0.4   VBC<0.4



G DS 
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n-channel MOSFET
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npn BJT
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Preliminary Comparison of MOSFET and BJT
(Saturation vs Forward Active)

• The BJT I/O relationship is  exponential in contrast to square-law for MOSFET 

• Provides a very large “gain” for the BJT (assuming input is voltage and output is current)

• This property is very useful for many applications

ID independent of VDS
IC independent of VCE



Stay Safe and Stay Healthy !



End of Lecture 19
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